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We report experimental and theoretical investigations of the Hall effect in YbRh2Si2 and its reference
compounds LuRh2Si2 and YbIr2Si2. Based on band-structure calculations we identify two bands dominating
the Hall coefficient in all these compounds. For the case of LuRh2Si2—the nonmagnetic reference compound
of YbRh2Si2—the temperature dependence of the Hall coefficient is described quantitatively to arise from two
holelike bands. For YbIr2Si2 and YbRh2Si2, renormalized band calculations yield two bands of opposite
character. In YbRh2Si2 these two bands almost compensate each other. We present strong indications that
sample dependences of the low-temperature Hall coefficient observed for YbRh2Si2 arise from slight variations
in the relative scattering rates of the two bands. Minute changes in the composition appear to be the origin. The
results of our band-structure calculations reveal that a transition of the 4f electrons from localized to itinerant
leads to a decrease in the Hall coefficient.
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I. INTRODUCTION

The heavy-fermion compound YbRh2Si2 has emerged as a
prototypical system for the investigation of quantum critical
phenomena.1 Pronounced non-Fermi-liquid properties arise
due to the proximity to a quantum critical point �QCP�.2 In
its ground state, YbRh2Si2 orders antiferromagnetically be-
low the Néel temperature, TN=70 mK.3 By applying a small
magnetic field of Bc=60 mT within the basal plane, the
magnetic order is suppressed to zero temperature, thus ac-
cessing the field-induced QCP.4

Hall effect measurements turned out to be of central im-
portance to understand the nature of the QCP as they allow to
discriminate two different theoretical scenarios5 as discussed
below. The Hall coefficient RH of YbRh2Si2 was measured as
the compound was driven from the magnetically ordered
state across the QCP toward the Landau-Fermi-liquid �LFL�
regime by increasing the magnetic field.6,7 Since anomalous
contributions8 are negligible9 at low temperatures, RH is di-
rectly related to the Fermi-surface volume. The Hall coeffi-
cient was found to exhibit a crossover linked to the QCP
which resides on top of a smooth background. Since this
crossover sharpens to a discontinuous jump in the extrapola-
tion to zero temperature these results imply an abrupt change
in the Fermi surface at the QCP. Such a Fermi-surface recon-
struction is at variance with the predictions of the standard
spin-density-wave theory.10–12 Rather, the results suggest a
new class of theoretical descriptions to be applied in
YbRh2Si2, namely, the Kondo-breakdown scenario in which
the 4f electrons are itinerant on the high-field side of the
QCP only.5,13–15 Consequently, the Hall effect represents a
key experiment to identify the unconventional nature of the
quantum criticality in YbRh2Si2.

On the other hand, it was pointed out that the Hall
coefficient of YbRh2Si2 is not simply proportional to the

inverse charge-carrier concentration since the assumption
of a spherical Fermi surface with a single band at the
Fermi energy EF is not valid in this material as shown by
various band-structure calculations16,17 and photoemission
studies.16,18 Several calculations yield multiple bands cross-
ing EF with canceling positive and negative contributions to
the Hall coefficient.17,19 Thus, the calculated Hall coefficient
critically depends on the method used, and it remains an
outstanding challenge to interpret the measured Hall coeffi-
cient quantitatively in terms of band-structure calculations.

The Hall effect measurements20 performed in a low-
temperature setup with improved resolution on a number of
YbRh2Si2 single crystals reproduced the results on a crystal
used in Ref. 6. Other crystals of different qualities, however,
show strong sample dependences below 20 K. Although the
critical crossover is found to be virtually independent of
sample quality, it remains to be understood why the under-
lying background exhibits such strong sample dependences.7

Here, we present experimental and theoretical progress
which helps to refine our understanding of the Hall effect in
YbRh2Si2. The issue of the low-temperature sample depen-
dences as well as the characteristics of RH�T� in YbRh2Si2
are addressed. Comparison with the Hall effect data of both
the nonmagnetic reference compound LuRh2Si2 and the
heavy-fermion compound YbIr2Si2 allows us to discriminate
various contributions to the Hall coefficient. Our renormal-
ized band-structure calculations yield excellent agreement
with the experimentally determined Hall coefficient for
YbIr2Si2 and LuRh2Si2. They provide a reliable basis to un-
derstand the sample dependences in YbRh2Si2. Moreover,
they enable us to relate the field-induced crossover of the
Hall coefficient to a change in the carrier concentration.6,7

We present the details and the results of the electronic
structure calculations in Sec. II. This includes the calculation
of the Hall coefficient in Sec. II E. In Sec. III the results
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of the electronic transport measurements on LuRh2Si2,
YbIr2Si2, and YbRh2Si2 are presented and discussed in the
light of determined electronic band structures.

II. BAND-STRUCTURE CALCULATIONS

A. Models of electronic structure

1. Local-moment regime

We begin by calculating the electronic structure of
YbRh2Si2 and YbIr2Si2, assuming that the Yb ions are in the
4f13 configuration. With this approximation we model the
Fermi surface and the quasiparticle bands in the local-
moment regime. As there are exactly 13 4f electrons or one
4f hole per Yb site the single-particle excitations of the 4f
shell involve valence transitions 4f13→4f14 and 4f13→4f12

which occur at high energies only. Consequently, the 4f de-
grees of freedom do not contribute to the low-energy excita-
tions in the vicinity of the Fermi surface. In this energy
range, the single-particle excitations are derived from the
weakly correlated �non-f� conduction states which form co-
herent Bloch states. We determine the dispersion of these
bands by standard band-structure calculations. The effective
potentials are generated self-consistently within the local-
density approximation �LDA� to density-functional theory.
The strong Coulomb repulsion among the 4f electrons which
suppresses charge fluctuations is implicitly accounted for by
treating the 4f electrons as part of the ion core assuming that
they do not hybridize with the conduction states. This as-
sumption seems justified for the systems under consideration
whose 4f valence deviates only weakly from the integer
value. We refer to this method as f-core calculation. By using
the f-core calculation for YbRh2Si2 to interpret the experi-
mental results obtained on LuRh2Si2 we rely on the facts that
the lattice parameters agree within the experimental error21

and that the results of the f-core calculation are independent
of the 4f occupancy.

The partially filled f shell of the 4f13 configuration nec-
essarily carries a magnetic moment in agreement with Kram-
ers’ theorem. The presence of local magnetic moments is
reflected in the Curie-Weiss behavior observed at elevated
temperatures in the magnetic susceptibility of YbRh2Si2 and
YbIr2Si2. The 4f moments, however, interact only weakly
with the conduction states as can be inferred, e.g., from the
low magnetic ordering temperature in YbRh2Si2. We neglect
the potential reconstruction of the conduction-electron Fermi
surface that may result from the long-range antiferromag-
netic order and account only for the 4f charge which con-
tributes to the potential seen by the conduction electrons.
This amounts to effectively averaging over the local mag-
netic degrees of freedom in determining the self-consistent
potentials. When comparing with experiment the bare bands
derived from the effective potentials have to be renormalized
by local 4f excitations. Scattering-off crystalline electric
field �CEF� excitations may enhance the effective masses and
reduce the lifetimes of the conduction electrons. With these
effects properly accounted for22,23 the f-core model should
quantitatively describe the electronic properties of Yb-based
heavy-fermion compounds at elevated temperatures. How-

ever, for the measured Hall effect of the heavy-fermion com-
pounds one has to take anomalous contributions into account
which arise from the skew scattering at the local f moments.
These contributions may only be neglected at very low tem-
peratures where, on the other hand, the f-core calculation is
insufficient for the description of heavy-fermion compounds.
Rather, we shall use the renormalized band calculation
�RBC� to understand the Hall coefficient in the heavy-
fermion compounds.

Treating the 4f electrons as part of the ion core can be
viewed as an extreme limit of an LDA+U calculation.
Therefore, we shall compare our data with recent results ob-
tained from LDA+U �Ref. 16�. The LDA+U calculation ex-
plicitly includes the magnetic moments of the 4f13 configu-
ration assuming long-range ferromagnetic order. This
treatment preserves the translational invariance of the under-
lying lattice. It removes, however, the spin degeneracy of the
conduction bands as they are split by the Zeeman effect. This
splitting is rather small reflecting the weak coupling between
the 4f states and the conduction electrons. For this reason,
we anticipate the energy bands of the LDA+U and the f-core
calculation to agree in the low-energy regime, i.e., in the
vicinity of the Fermi surface.

2. Heavy Fermi-liquid regime

The strongly renormalized heavy quasiparticle bands are
determined by means of the renormalized band method24,25

which combines material-specific ab initio methods and phe-
nomenological considerations in the spirit of Landau. The
key idea is to construct an effective Hamiltonian for the low-
energy excitations which uses the ab initio potentials for the
weakly correlated conduction-electron channels while intro-
ducing one parameter to account for the specific local corre-
lations among the 4f electrons. The parameter is determined
once by fitting to experiment and is kept fixed during subse-
quent investigations. A detailed description of the method
and typical results for Ce-based compounds are given in
Refs. 26 and 27. Operationally, it amounts to transforming
the f states of the spin-orbit ground-state multiplet at the
lanthanide site into the basis of CEF eigenstates �m� and
introducing resonance-type phase shifts

�̃ f�E� � arctan
�̃ f

E − �̃ f

, �1�

where the resonance width �̃ f accounts for the renormalized
quasiparticle mass. The resonance energies �̃ fm= �̃ f +�m refer
to the centers of gravity of the f-derived quasiparticle bands.
Here �̃ f denotes the position of the band center correspond-
ing to the CEF ground state while �m are the measured CEF
excitation energies. One of the remaining two parameters, �̃ f,
is determined by imposing the condition that the charge dis-
tribution is not altered significantly by introducing the renor-
malization. This makes the RBC a single-parameter scheme.

The free parameter, �̃ f, is adjusted in such a manner that the
coefficient of the linear-in-T specific heat at low tempera-
tures is reproduced. The effective band-structure Hamil-
tonian constructed along these lines corresponds to a hybrid-
ization model which closely parallels the one obtained from
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the periodic Anderson model in mean-field approximation.
Alternatively, the RBC can be viewed as a parametrization
scheme for the variation with energy of the real part of the
local 4f electron self-energy. The parameter to be determined
by experiment is the slope at the Fermi energy while the
value at EF is fixed by retaining the charge distribution.

The method has been shown to reproduce Fermi surfaces
and anisotropies in the effective masses of a great variety of
Ce-based compounds. In addition, it allows to predict Fermi-
liquid instabilities.28–32

In calculating the coherent 4f-derived quasiparticle bands
in Yb-based heavy-fermion compounds we essentially follow
the procedure for the Ce case as described above. We have to
account for the fact that Yb can be considered as the hole
analog of Ce. Operationally this implies that we have to
renormalize the 4f j=7 /2 channels at the Yb sites instead of
the 4f j=5 /2 states in the Ce case. As the 4f hole count is
slightly less than unity the center of gravity �̃ f will lie below
the Fermi energy. In addition, we have to reverse the hierar-
chy of the CEF scheme, i.e.,

�̃ f � 0; �̃ fm = �̃ f − �m. �2�

B. Computational method

The calculations are done on the basis of the experimental
lattice parameters a=b=4.007 Å, c=9.858 Å for YbRh2Si2
and LuRh2Si2 �cf. Sec. II A 1� and a=b=4.032 Å, c
=9.826 Å for YbIr2Si2 �I type�.3,33 The band structures were
obtained by the fully relativistic formulation of the linear
muffin-tin orbitals method.34–36 We adopt the atomic-sphere
approximation including the combined correction term
which contains the leading corrections.34 In solving the
band-structure problem, we include s-p-d-f components at
the Yb and the transition-metal �Rh, Ir� sites and s-p-d com-
ponents at the Si sites. The spin-orbit interaction is fully
taken into account by solving the Dirac equation. Although
the relativistic effects hardly change the electron-density dis-
tribution they nevertheless influence the actual location of
the energy bands. This aspect is particularly important for the
renormalized band structure since the spin-orbit splitting of
the d states is rather large on the energy scales relevant for
the strongly renormalized heavy quasiparticles. Exchange
and correlation effects were introduced using the Barth-
Hedin potential.37 The band structure was converged for
405 k points within the irreducible wedge, whose volume
equals 1/16 of the Brillouin zone. The density of states
�DOS� was evaluated by the tetrahedron method with linear
interpolation for the energies. For the conduction band the
DOS was calculated at 0.25 mRy ��3.4 meV� intervals. To
obtain reliable values for the transport integrals the energies
were calculated at 2601 k points within the irreducible
wedge. Subsequently, the bands were interpolated using
MATHEMATICA VI, and the result was used to numerically
evaluate the desired quantities.

C. Electronic structure

1. YbRh2Si2 in the local-moment regime

Figure 1 displays the electron bands of YbRh2Si2 in the

vicinity of the Fermi energy along symmetry lines with the
4f electrons being treated as part of the ion core. Here, the
band states have predominantly Rh 4d character with some
admixture of Yb 5d character. The dispersion of YbRh2Si2
agrees rather well with the results of recent LDA+U
calculations.16,39 In addition, it is consistent with energy
bands deduced from photoemission studies.16

In the 4f-core calculation, the broad bands intersecting the
Fermi energy are exclusively formed by the non-f conduc-
tion states. This is reflected in the low DOS at the Fermi
energy N�EF�=2.1 states/�eV unit cell� for the f-core calcu-
lation of YbRh2Si2 as shown in Fig. 2.

2. YbRh2Si2 and YbIr2Si2 in the heavy-Fermi-liquid regime

The calculations reported here adopt a CEF scheme which
is consistent with susceptibility and inelastic neutron-
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FIG. 1. YbRh2Si2: electronic bands along symmetry lines with
the Fermi energy EF=0 chosen as reference energy. The Yb 4f elec-
trons are treated as part of the ion core. We follow the notation of
Ref. 38 using the labels Z �0,0,1�, � �0,0,0�, X �1,1,0�, P �1,1,1�, and
N � 1
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FIG. 2. �Color online� YbRh2Si2: comparison of the total DOS
in the local-moment regime �f-core calculation, solid line� and in
the heavy-Fermi-liquid regime �RBC, red shaded area�. The refer-
ence energy is the Fermi energy EF=0. The two bands in the low-
energy part are derived from the Si s states. The dominant features
are the Rh 4d bands which hybridize with Si p and Rh s states near
the bottom of the d bands and with Si d and Rh p states near the
top, respectively.
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scattering data.40,41 The latter indicate that the 4f13 states
in YbIr2Si2 and YbRh2Si2 are split into four doublets with
the energies 0–18–25–36 meV and 0–17–25–43 meV,
respectively. The low-energy properties are mainly deter-
mined by the CEF ground state which is a superposition of
�j=7 /2; jz= 	5 /2� and �j=7 /2; jz= 
3 /2� and which is well
separated from the excited states. The CEF parameters and
the CEF eigenstates are given in Ref. 42. Using the effective

quasiparticle resonance widths of �̃ f �20 K and �̃ f �40 K
as inferred from specific-heat and thermopower measure-
ments for Rh �Refs. 21 and 43� and Ir �Ref. 33� compounds
yields the band structures displayed in Fig. 3. The dispersion
of the renormalized bands of the Rh and the Ir compound are
rather similar, the bandwidths scale with the characteristic
temperatures. We shall concentrate on the results for the Rh
compound in the subsequent discussion.

The RBC yields narrow f-derived quasiparticle bands in
the vicinity of the Fermi energy whereas the dispersion of the
non-f bands is essentially unaffected. This can be seen from
Fig. 2 in which the DOS derived from the renormalized
bands are compared with the f-core counterpart. The ex-
panded view of the RBC DOS in the low-energy regime as
depicted in Fig. 4 shows the contributions of the CEF-split

4f states. The CEF excitations appear in the occupied part of
the spectrum below the Fermi energy. The hybridization and
hence the effective quasiparticle masses are rather aniso-
tropic. The renormalized band calculations yield a DOS of
290 states/�eV unit cell� at EF corresponding to Sommerfeld
coefficient �=680 mJ mol−1 K−2. For YbIr2Si2 a DOS of
48 states/�eV unit cell� at EF is calculated corresponding to
�=113 mJ mol−1 K−2.

D. Fermi surface and quasiparticles

1. Local-moment regime

The LDA calculation for localized 4f electrons predicts
three bands to cross the Fermi energy and leads to the Fermi
surface which closely resembles previous results.16,44 It con-
sists of three separate sheets. The two main sheets form a
hole surface centered around the Z point, and a complex,
multiconnected surface. Following Ref. 16 we shall refer to
them as “donut” and “jungle gym,” respectively. In addition,
there is a small �-centered electron surface, the “pill box.”
We shall focus on the two main sheets which are displayed in
Fig. 5 as these two dominate the electronic properties.

2. Heavy-Fermi-liquid regime

The RBC also predicts two major sheets at the Fermi
surface whose topologies resemble those found by LDA
�Refs. 19 and 45� �see Fig. 5�. The major sheets of the Rh
compound and its Ir counterpart are rather similar. The main
difference occurs in the small pockets. The small �-centered
electron pocket of the Rh compound is absent in the Ir sys-
tem where we find a Z-centered hole pocket instead.

From the comparison of the f-core results and those of the
RBC it is obvious that they represent “small” and “large”
Fermi surfaces, respectively. The difference of the Fermi vol-
ume accounts for the additional states related to the large
quasiparticle DOS at EF for the heavy-Fermi-liquid limit �cf.
Fig. 2�.

E. Calculation of the Hall coefficient

For the chosen experimental geometry and using the
Boltzmann approximation, the Hall coefficient is given in the
low-field limit by46
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FIG. 3. Dispersion of the renormalized bands along symmetry
lines for YbRh2Si2 �upper panel� and YbIr2Si2 �lower panel�. The
anisotropy of the CEF ground state leads to highly anisotropic hy-
bridization strength which affects the relative shifts and the widths
of the bands. The topology of the Fermi surfaces is mainly deter-
mined by the steep conduction bands. The symmetry of the CEF
ground state is reflected in effective-mass anisotropies. The coordi-
nates of the symmetry points Z, �, X, P, and N are specified in the
caption of Fig. 1
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RH =

�
i

�xyz�i�

��
i

�xx�i�	2 , �3�

where the conductivity tensor elements

�xx�i� = e2 1



�
k

��i�vx
2�i,k��−

� f

�E�i,k�	 �4�

and

�xyz�i� =
e3

c

1



�
k

�2�i�
vx�i,k�vy�i,k�Myx
−1�i,k�

− vx
2�i,k�Myy

−1�i,k��� � f

�E�i,k�	 �5�

are summed over all bands i intersecting the Fermi surface.
We enumerate the donut and the jungle gym with i=1 and
i=2, respectively. We restrict ourself to the first two bands

which dominate the total conductivities and neglect small
pockets. In the following, we allow for the possibility that
the relaxation time � may vary from one band to another but
we shall neglect the variation in the relaxation time � with
wave vector k �with components k��. Here, e and c denote
the electron charge and the vacuum speed of light, respec-
tively. 
 represents the volume of the Brillouin zone and f
the Fermi-distribution function. The components of the ve-
locity

v��i,k� =
1

�

�

�k�

E�i,k� �6�

and of the inverse mass tensor

M��
−1 �i,k� =

1

�2

�2

�k� � k�

E�i,k� �7�

are deduced from the energy bands E�i ,k�.
For the discussion of Fermi-surface effects we write lon-

gitudinal and transverse conductivity as

�xx�i� = ��i��̄xx�i� ,

�xyz�i� = �B�i��̄xyz�i� �8�

with the prefactors

��i� =
e2

m
��i�n̄�i� ,

�B�i� =
�e�3

m2c

��i��2n̄�i� �9�

being the Drude result for a gas of free particles with charge
�e�. The particle density n̄�i� corresponds to the number of
occupied states per unit cell in band i while the reduced
transport integrals �̄xx�i� and �̄xyz�i� account for the devia-
tions of the conductivity tensor elements and the particle
density from the free particle picture. The results for the
systems under consideration are summarized in Table I.

For the f-core calculations we obtain positive Hall �trans-
verse� conductivity for both bands corresponding to holelike
character of the charge carriers. The crucial point is that for
the RBC results, by contrast, the jungle-gym, is predomi-
nantly electronlike as can be inferred from the reduced trans-
port integrals listed in Table I. Moreover, we find for

TABLE I. Calculated reduced transport integrals for the two different bands �i=1,2�. The results derived
for the two different Fermi-surface models are compared. The Fermi surface results for YbIr2Si2 within the
RBC are included for comparison. See text for methods.

System Method i n̄�i� �̄xx�i� �̄xyz�i� n̄�i��̄xyz�i�

YbRh2Si2 4f core 1 1.76 0.197 +0.289 +0.50864

2 1.22 0.384 +0.153 +0.18666

YbRh2Si2 4f RBC 1 1.37 0.0137 +0.00275 +0.0037675

2 0.63 0.0747 −0.00652 −0.0041076

YbIr2Si2 4f RBC 1 1.42 0.051 +0.00323 +0.0045866

2 0.58 0.138 −0.01003 −0.0058174

i = 1 ‘donut’ i = 2 ‘jungle gym’

f -core

RBC

FIG. 5. Calculated Fermi surfaces of YbRh2Si2: major sheets of
the Fermi surface in the f-core calculation representing the local-
moment regime �top row� and the heavy-fermion regime �bottom
row�. In addition to the donut �left panel� and the jungle gym �right
panel� there is a small electron surface �pill box� which is not dis-
played here. The topology of the Fermi surface agrees well with
previous findings �Refs. 16, 19, 44, and 45�.
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YbRh2Si2 that the two bands almost compensate each other.
This is seen by the fact that the products n̄�i��̄xyz�i� of the
two bands are close to each other in magnitude and of oppo-
site sign. Their sum determines the numerator of Eq. �3�.
Since we allow for different relaxation rates of the individual
bands, this gives rise to a weighting of these two terms in the
sum of Eq. �3�. Consequently, the total Hall coefficient very
sensitively depends on the relative relaxation rates of the two
bands. Even the sign of RH may change if this balance is
shifted only slightly toward the electronlike band. We discuss
later that this might relate to the sample dependences ob-
served in YbRh2Si2.

The calculated transport integrals vary only slightly with
the position of the Fermi level. This is contrary to the result
of Ref. 17 and reflects the different methods used. The LDA
calculations of Ref. 17 are not able to account for the posi-
tion of the 4f level with respect to the Fermi energy. The
RBC on the other hand takes the correlation effects into con-
sideration and, thus, does not rely on a shift of the 4f-level
position.

III. COMPARISON TO HALL EFFECT MEASUREMENTS

In this section we present the Hall effect measurements
and use the above results of the electronic structure calcula-
tions to advance our understanding of the experimental ob-
servations.

A. Samples

Single crystals of YbRh2Si2, YbIr2Si2, and LuRh2Si2 were
synthesized applying an indium-flux-growth technique as de-
scribed earlier.3 We note that within this work we concentrate
on the I-type phase of YbIr2Si2 which is isostructural to
YbRh2Si2.33

In LuRh2Si2, also isostructural to YbRh2Si2, the Lu3+ has
14f electrons and consequently retains a fully occupied f
shell without magnetic moment. Therefore, it serves as a
nonmagnetic reference compound to YbRh2Si2. An assign-
ment of the YbRh2Si2 f-core calculations to LuRh2Si2 is jus-
tified by the fact that LuRh2Si2 has equal lattice parameters
within experimental error. This allows us to model the ex-
perimentally observed temperature dependence of the Hall
coefficient. The f-core calculations yield a DOS �Sec. II C 1�
which corresponds to a bare linear-in-T specific-heat coeffi-
cient of ��5 mJ mol−1 K−2 in good agreement with the ex-
perimental value ��6.5 mJ mol−1 K−2 found for LuRh2Si2
�not shown�. The resistivity as displayed in the inset of Fig. 6
is approximately linear in T above 100 K with ��300 K�
=20 �
 cm. Both the specific heat and the resistivity indi-
cate that LuRh2Si2 is a simple nonmagnetic intermetallic
compound.

YbRh2Si2 and YbIr2Si2 exhibit pronounced heavy-
fermion behavior in various properties.3,33 In particular, the
specific heat is largely enhanced �cf. Sec. II C 2�. However,
their ground states differ: YbRh2Si2 exhibits antiferromag-
netic order at zero magnetic field whereas YbIr2Si2 is para-
magnetic obeying LFL behavior below 200 mK.33 Proximity
of YbIr2Si2 to a QCP is indicated by a logarithmic diver-

gence of the specific heat for temperatures above 200 mK.
Since YbIr2Si2 has a larger unit-cell volume than YbRh2Si2 it
is assumed to be located on the paramagnetic side of the
QCP as unit-cell expansion weakens magnetic ordering in Yb
systems. Consequently, YbIr2Si2 serves as a reference com-
pound with fully itinerant 4f states as accounted for in the
RBC. For YbRh2Si2, in its ground state in zero magnetic
field, by contrast the f electrons appear to be localized as
inferred from the Fermi-surface reconstruction.6

B. Experimental setup

All samples were polished to thin platelets of thickness in
the range 25� t�80 �m. Subsequently, the samples were
prescreened via resistivity ��T ,B� measurements to ensure
indium free samples. The current I was driven within the
crystallographic ab plane. The magnetic field B was applied
along the c axis, thus, inducing the Hall voltage perpendicu-
lar to I within the tetragonal plane 
see Fig. 6�b��. To mea-
sure the Hall effect the transverse voltage Vy was monitored.
In order to cancel out magnetoresistance components due to
contact misalignment, the Hall resistivity was obtained from
the antisymmetric component of the field-reversed transverse
voltage, �H�B�= t
Vy�+B�−Vy�−B�� /2I. The linear-response
Hall coefficient RH was derived as the slope of linear fits to
the Hall resistivity �H�B� for fields B�0.4 T. Only the low-
temperature Hall resistivity of LuRh2Si2 displays a deviation

c

I
Vy

B

(a)

(b)

FIG. 6. �Color online� �a� Temperature dependence of the linear-
response Hall coefficient RH of LuRh2Si2. The inset displays the
resistivity of LuRh2Si2 as a function of temperature. Solid lines
represent the simulated data according to the two-band model de-
scribed by Eqs. �10�–�15�, using the parameters specified in Table II
�see text�. Dashed line in the inset denotes the electrical resistivity
calculated on the basis of a measured phonon spectrum �Ref. 41�.
Adding the experimentally determined residual resistivity �R

=1.2 �
 cm in accordance with Eq. �14� yields a precise match
with the measured data. �b� sketches the setup.
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from linearity as discussed in Ref. 47. In this case, the initial-
slope Hall coefficient was deduced by extrapolating the dif-

ferential Hall coefficient R̃H�B�=��H�B� /�B to B=0. Al-
though this procedure yielded slightly larger values of RH,
the analysis presented here is not affected by this offset.

We note that the error on the absolute value of RH arising
from the uncertainty of the thickness of the samples is on the
order of 10%. For YbRh2Si2, the results were scaled by a
single factor in the temperature range 20�T�400 K to the
previously published data.6 The fact that this leads to a very
precise match of RH�T� in this temperature range accounts
for the error arising from the thickness which enters as a
factor. Consequently, the uncertainty of the sample thickness
does not obstruct a detailed comparison of the different
YbRh2Si2 samples.

Measurements between 2 and 400 K were conducted in a
Quantum Design physical property measurements system.
For measurements down to T=15 mK a 3He / 4He-dilution
refrigerator was utilized. In this case, the voltages were am-
plified by low-temperature transformers and subsequently re-
corded by a standard lock-in technique.

C. Experimental results and discussion

1. LuRh2Si2

The temperature dependence of the linear-response Hall
coefficient, RH�T�, for LuRh2Si2 is depicted in Fig. 6 for
temperatures between 17 mK and 400 K. For LuRh2Si2 the
Hall coefficient is always positive indicating holelike charge
carriers in agreement with the predictions of the f-core cal-
culations on YbRh2Si2. The temperature dependence dis-
plays a constant value below 20 K at RH�5.3
�10−10 m3 /C followed by a crossover to another constant
value of �3.1�10−10 m3 /C above 100 K. We note that a
very similar behavior of RH�T� has been observed for the
nonmagnetic La analogs of the CeMIn5 �M =Co, Ir, and Rh�
family of compounds.48

For elemental copper a similar temperature dependence
was observed. It was suggested to arise from two bands ef-
fectively contributing to the Hall coefficient with their
weights changing as a function of temperature.46 In the fol-
lowing we demonstrate that the combination of band-
structure calculations and comprehensive electrical transport
measurements allow to model the temperature dependence of
RH quantitatively.

2. Application of a two-band model to LuRh2Si2

In the light of the results of our calculation �Table I� it is
reasonable to interpret the temperature dependence of RH of
LuRh2Si2 within a two-band model. Here, the observed
crossover may be interpreted as the transition between the
limits of the respective band dominating the total Hall coef-
ficient. This may result from a shift of the relative scattering
rate of the charge carriers in the individual bands off either
phonons at high temperatures or static defects at low tem-
peratures. For a quantitative analysis, we rewrite Eq. �3� for
two bands as a function of the resistivities as

RH � �0
2 �

i=1,2

RH�i�
��i�2 . �10�

Here, we approximated ���−1 which is justified given the
small Hall angle of less than 3°. The Hall coefficient of the
individual bands is introduced as

RH�i� =
�xyz�i�
�xx�i�2 . �11�

The total resistivity �0 given by

�0
−1 = �

i=1,2
��i�−1 �12�

was measured simultaneously with the Hall effect and is dis-
played in the inset of Fig. 6. By introducing the ratio r
=��1� /��2� of the resistivities of the two bands we obtain the
form

RH =
RH�1� + r2RH�2�

�r + 1�2 . �13�

Here, it becomes obvious that the overall Hall coefficient is
only a function of the ratio r but not of the absolute values of
��i�, provided the RH�i� are temperature independent. For
LuRh2Si2 this latter assumption is supported by the band-
structure calculations which yield constant values of RH�i� up
to 400 K, i.e., the thermal broadening of the Fermi surface
has negligible influence, a typical behavior of conventional
metals due to their high Fermi temperatures. We rather as-
sume that merely ��i� are temperature dependent. For
LuRh2Si2 we model the resistivity as a sum of different con-
tributions according to Matthiessen’s rule restricting ourself
to a residual ��R� and a phononic ��P� term

��i� = �R�i� + �P�i� . �14�

The Bloch-Grüneisen law

�P�i� = C�i�� T

�D
	5�

0

�D/T x5

sinh2�x�
dx �15�

describes the phononic component very well �cf. inset of Fig.
6�. This is corroborated by the agreement of the measured
resistivity and the electrical resistivity calculated using a
phonon DOS derived from measured inelastic neutron-
scattering spectra41 �cf. Fig. 6�. In Eq. �15�, C�i� is a constant
related to the electron-phonon scattering probability of each
band and �D=380 K is the Debye temperature determined
from specific heat.49 Taking Eqs. �10�–�15� together one rec-
ognizes that the total Hall coefficient is determined at low
temperatures by the ratio of the residual resistivities and at
high temperatures by that of the phonon scattering rates. This
is in good agreement with the experimental data. The low-
temperature constant regime in RH�T� is observed in the tem-
perature range where the resistivity is almost constant. By
contrast, the high-temperature regime of RH�T� corresponds
to a range where ��T� appears to be dominated by electron-
phonon scattering as indicated by the fact that ��T� amounts
to more than ten times its residual value �R. Finally, the
crossover is centered at T=50 K where the resistivity is
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twice its residual value implying that both contributions �R
and �P are equal at this temperature.

Equations �10�–�15� contain in total six free parameters:
the Hall coefficients, the residual resistivities, and the
phonon-scattering rates of the two bands. In order to fit these
equations to our data we proceeded as follows: first, we uti-
lized the results of our band-structure calculation �Table I� in
Eq. �11� to obtain the contributions RH�i� of the individual
bands. These results are listed in the first column of Table II.
Second, these RH�i� and our experimental RH are employed
to obtain r from Eq. �13�. This step is performed with the
value of RH measured at low temperatures yielding r=1.3, as
well as in the high-temperature limit. However, in the latter
case no exact solution is possible since the solution space is
limited to RH�3.5�10−10 m3 /C, where r=5.7 for the val-
ues RH�i� obtained on the basis of the calculated electronic
structure. The discrepancy between the measured and the
calculated Hall coefficients at high temperatures may also be
corrected by a change of RH�2� to 3.6�10−10 m3 /C. This
might indicate that the assumption of an isotropic relaxation
time is not fully justified. However, we rather stick to the
results of the band-structure calculation as any change would
be arbitrary. Third, we take advantage of the fact that, at our
lowest measurement temperature �T��D�, �P is negligible
leaving only �R in Eq. �14�. With r known from the second
step and the total resistivity 
Eq. �12�� set to the experimen-
tally obtained value at low temperature, the individual �R�i�
can be calculated. In the high-temperature regime, on the
other hand, the residual term in Eq. �14� is negligible and
hence, the individual values of �P�i� are obtained from
which, in turn, C�i� is inferred. All results are summarized in
Table II.

With the parameters given in Table II we are now in the
position to simulate the overall temperature dependence of
both the Hall coefficient and the resistivity again employing
Eqs. �10�–�15�. The results are included in Fig. 6 as solid
lines. The good quantitative and the even better qualitative
agreement of simulated and measured data justify the appli-
cation of the two-band model. We emphasize that the posi-
tion of the crossover in RH�T� and the position where ��T�
deviates from its residual value are not fitted but are dictated
by the Debye temperature which was determined indepen-
dently.

3. YbIr2Si2 and YbRh2Si2

For the heavy-fermion compounds YbIr2Si2 and
YbRh2Si2 the temperature dependence of the Hall coefficient

is more complicated as can be seen from Figs. 7 and 8. At
high temperatures both compounds show a minimum in
RH�T� in the same temperature range where the resistivity
assumes a maximum �cf. insets of Figs. 7 and 8�, namely, at
approximately 180 K for YbIr2Si2 and 120 K for YbRh2Si2.
This corroborates the earlier assignment of this minimum in
RH�T� of YbRh2Si2 to the anomalous Hall effect arising from
skew scattering which predicts such a correlation between
the resistivity and the anomalous Hall contributions.9

Between 80 and 30 K RH�T� of YbIr2Si2 assumes a pla-
teau at a value of 0.14�10−10 m3 /C. This indicates that
the anomalous contribution, typically being of importance
around the resistivity maximum only, is superposed to a nor-
mal component as expected in the theory of the anomalous
Hall effect.8

In the temperature range between 30 and 8 K a crossover
to another plateau at a value of 0.35�10−10 m3 /C is ob-
served in RH�T� of YbIr2Si2. Two possible reasons may ac-
count for this observation. �i� The crossover might be of the
same two-band nature as in LuRh2Si2. However, as the cross-
over in YbIr2Si2 is situated at a lower temperatures it should
be accompanied by a decreased value of the Debye tempera-
ture. Unfortunately, �D is not yet known. Moreover, single
crystals of LuIr2Si2 are not available to look for a possible
shift of the two-band crossover in this nonmagnetic reference
compound. �ii� Alternatively, the crossover might manifest
the Fermi-surface change arising from the onset of the
Kondo screening effect which leads to itinerant f electrons
contributing to the Fermi surface at low temperatures.

Below 4 K the Hall coefficient of YbIr2Si2 exhibits a pro-
nounced increase, peaks at 1 K and drops at lower tempera-
tures. At 0.23 K, RH�T� changes sign and finally saturates at
the lowest temperatures at a value of −0.4�10−10 m3 /C.

For YbRh2Si2 the minimum in RH�T� at 100 K caused by
the anomalous Hall effect is uniquely observed for all
samples investigated. By contrast, below 50 K strong sample
dependences are present. Figure 8 consists of data obtained
for a large variety of samples. Three of these samples were
selected for low-temperature measurements down to 15 mK

TABLE II. Parameters calculated for LuRh2Si2 within the
two-band model. The values were obtained from the parameters of
Table I following the recipe outlined in the text. Inserting the values
listed here, we simulate RH�T� and ��T� as shown by the solid lines
in Fig. 6.

i
RH�i�

�10−10 m3 /C�
�R�i�

��
 cm�
C�i�

��
 cm�

1 21 2.75 7

2 4.2 2.11 1.23

Resistivity ratio r 1.3 5.7

FIG. 7. Initial-slope Hall coefficient RH of YbIr2Si2. The arrow
marks the temperature below which LFL behavior was observed
�Ref. 33�. Inset displays the temperature dependence of the
resistivity.
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and represent the full range of sample dependences. Samples
1 and 3 exhibit a shoulder in RH�T� around 15 K whereas
RH�T� of sample 2 shows a plateau in the temperature inter-
val 7�T�20 K. All samples exhibit a maximum in RH�T�
around 1 K like in YbIr2Si2, however, at different absolute
values. This maximum is assigned to the quantum critical
spin fluctuations operating for all samples in the same tem-
perature regime. Such a pronounced extremum was also re-
ported for CeMIn5 where antiferromagnetic fluctuations were
suggested as the microscopic origin.48,50 In YbRh2Si2, NMR
investigations51 revealed antiferromagnetic fluctuations to be
present in the designated temperature range. However, the
temperature dependence of RH�T��T−1 predicted in Ref. 50
is not observed in YbRh2Si2 nor YbIr2Si2.

Finally, at the lowest temperatures all samples of
YbRh2Si2 show a saturation of RH�T�, setting in just below
the Néel temperature. However, the saturation value appears
to be sample dependent.

4. Sample dependences

A series of YbRh2Si2 samples with different residual re-
sistivities have been investigated above 2 K. It turns out that
the saturation values at lowest temperature correlate with the

values at the plateau/shoulder around 20 K. The plateau is
more pronounced for samples with a lower saturation value.
Sample 1 obeys a comparably slight shoulder and saturates at
the highest low-temperature value. Sample 2 depicts the
most pronounced shoulder resembling a plateau and exhibits
the lowest saturation value. Sample 3 with an intermediate
saturation value obeys a more pronounced shoulder than
sample 1. The correlation indicates that the maximum around
1 K is caused by a superposed contribution which itself is not
affected by the sample dependences.

It is observed that samples from the same batch �cf. colors
in Fig. 8� show almost identical RH�T� curves. From this we
infer that sample dependences arise from slight differences in
crystal growth. By contrast, a correlation between sample
quality and these sample dependences cannot be found. This
is quantitatively analyzed in Table IV for the selected
samples by a comparison of the low-temperature saturation
value of RH with the residual resistivity ratio �RRR�. An
equivalent conclusion is found for the larger set of samples.
In the absence of measurements in the millikelvin range, the
resistivity ratio at 2 K is used to quantify the sample quality
which appears to be uncorrelated with the Hall coefficient at
2 K.

No sample dependences were observed for LuRh2Si2 for
which three samples were investigated. In the case of
YbIr2Si2 only one sample without indium enclosures could
be identified. In samples with indium enclosures the rear-

TABLE III. �Color online� Sample and batch numbers of the
data sets shown in Fig. 8 together with the value of the Hall coef-
ficient �in units of 10−10 m3 /C� and the resistivity ratio at 2 K.

TABLE IV. Calculated and experimental Hall coefficients. The calculated RH values are derived by considering the two major bands with
the assumption of equal relaxation times �see text�. Values of the zero-temperature Hall coefficient, RH�T→0�, extrapolated from measure-
ments are given for the related materials. RH is in units of �10−10 m3 /C�.

Calculation Experiment

System Method RH Sample RRR RH�T→0�

YbRh2Si2 4f core 5.16 LuRh2Si2 17 5.3

YbRh2Si2
YbRh2Si2 4f RBC −0.39 Sample 1 70 2.0

Sample 2 120 0.1

Sample 3 40 1.2

YbIr2Si2 4f RBC −0.26 YbIr2Si2 325 −0.4

FIG. 8. �Color online� Temperature dependence of the Hall co-
efficient for different samples of YbRh2Si2. See Table III for leg-
end. Results for samples of the same batch are shown in identical
color. Arrow indicates the Néel temperature. Inset displays the re-
sistivity of two selected crystals.
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rangement of the current distribution largely disturbs the Hall
effect measurement and therefore no statement on sample
dependences can be made. However, the fact that the calcu-
lated and the measured Hall coefficients agree suggests that
the measurements depict the intrinsic behavior �see below�.

5. Comparison of theory and experiment

Unfortunately, for YbIr2Si2 and YbRh2Si2 it is not pos-
sible to apply the two-band model as done for LuRh2Si2
because both the resistivity and the Hall coefficient contain
additional �quantum critical� contributions. Thus, the number
of unknown parameters would and could, in particular, not
be mapped with measured quantities. For a qualitative dis-
cussion we make the simplified assumption of equal relax-
ation rates for the two bands which yield the Hall coeffi-
cients listed in Table IV.

For YbIr2Si2, the agreement between the zero-temperature
Hall coefficient, RH�T→0�, extrapolated from measure-
ments, and the calculated value is remarkable �see Table IV�.
In the case of YbRh2Si2 our band-structure calculations pre-
dict a value lower than the experimental RH�T→0�. This
might be due to deviations from equal relaxation rates as the
sample dependences indicate that small changes can have
large influence.

The most straight-forward interpretation of the sample de-
pendences in YbRh2Si2 arises from the insight provided by
the band-structure calculations. As shown in Sec. II E, the
two bands dominating the Hall coefficient are of opposite
character and almost compensate each other. The actual
value of the total Hall coefficient, therefore, depends sensi-
tively on the ratio of the scattering rates of the individual
bands because they enter as a weighting factor in the sum-
mation of the individual contributions. Hence, it is reason-
able to assign the observed sample dependences to changes
in the relative scattering rates. This is in agreement with the
fact that other properties such as specific heat, susceptibility,
and even resistivity �cf. inset of Fig. 8� do not obey such
strong sample dependences as none of these properties de-
pend this sensitively on the ratio of the scattering rates. In
fact, the resistivity is a sum of the two 
Eq. �12��.

Finally, the fact that samples of the same batch exhibit
almost identical behavior in RH�T� allows us to surmise that
the sample dependences are related to tiny differences in the
actual stoichiometry caused by different crystal growth con-
ditions. Such sensitivity on minute changes in the composi-
tion is known, for instance, for the heavy-fermion supercon-
ductor CeCu2Si2 where it leads to even more dramatic
effects, which include drastic changes in the ground state.52

The sample dependences in RH�T� are observed to set in
around 70 K. Below 10 K they are fully developed and ap-
pear to be conserved down to the lowest temperatures as an
offset between different samples. Consequently, the low-
temperature Hall coefficient reflects the Fermi surface with
sample-dependent, but fixed, weight of the individual sheets.
This indicates that the Hall crossover, monitoring the Fermi-

surface reconstruction at the QCP, is robust against sample
dependences as indeed observed.7

The comparison of the calculated Hall coefficient for the
limiting cases of localized �4f core� and itinerant �4f RBC�
4f electrons in Table IV shows that the inclusion of the
Yb 4f states into the Fermi volume leads to a decrease in the
Hall coefficient. Consequently, the finding of a jump from
larger RH at zero field toward a lower value at elevated fields
in isothermal scans6,7 indicates a localization of the f elec-
trons on the low-field side of the QCP in YbRh2Si2.

IV. CONCLUSION

We have calculated the electronic band structure of
YbRh2Si2 and YbIr2Si2 both with and without taking the
Kondo scattering into account. Two bands were found to
dominate the Hall coefficient. Both these bands are holelike
in the case of the f-core calculations neglecting the Kondo
effect but are of opposite character for the case of the renor-
malized band calculation. The derived results allow for an
in-depth analysis of the Hall coefficient of the nonmagnetic
reference compound LuRh2Si2. We are able to quantitatively
understand the temperature dependence of the Hall coeffi-
cient in terms of a two-band model.

Furthermore, we present Hall effect measurement on
YbIr2Si2. Here, the temperature dependence of the Hall co-
efficient parallels many features known for YbRh2Si2. In par-
ticular, the anomalous contribution is seen to follow the ex-
pected trend. Remarkably, the Hall coefficient derived from
the renormalized band calculation is in very good agreement
with the measured value at lowest temperatures.

Finally, the sample dependences of the low-temperature
Hall coefficient of YbRh2Si2 are discussed in terms of the
two bands predicted by the calculations and seen in
LuRh2Si2. The fact that the renormalized band calculation
predicts the two bands to almost compensate each other in-
dicates that the sample dependences arise from small
changes in the scattering rates for the individual bands.
These changes are ascribed to minute differences in the
sample composition as samples of the same batch show al-
most identical behavior. More importantly, despite the strong
sample dependencies our comprehensive study on YbRh2Si2
confirms that the distinct change in the Hall coefficient,
found in isothermal scans across the quantum critical point,
marks a substantial change in the Fermi surface in the same
way as expected in the Kondo breakdown scenario.7
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